Name:

Perpendicular Lines

- Perpendicular lines cross each other at 90° (a right angle).
- They will have a unique solution (they cross only once, so ONE solution).
- Their slopes are the NEGATIVE RECIPROCAL of each other $\left(m \rightarrow -\frac{1}{m}\right)$
- If you multiply their slopes, you get -1.

Ex 2. Practice finding the negative reciprocal.

a)
$$\frac{1}{3} \rightarrow \frac{-3}{1}$$

b)
$$-\frac{2}{5} \rightarrow \frac{5}{2}$$

a)
$$\frac{1}{3} \rightarrow \frac{-3}{1}$$
 b) $-\frac{2}{5} \rightarrow \frac{5}{2}$ c) $4 \rightarrow \frac{1}{4}$ d) $-2 \rightarrow \frac{1}{2}$

$$\begin{array}{c} d) - 2 \rightarrow \frac{1}{2} \end{array}$$

Ex 3. Find the equation of the line that is perpendicular to y = -3x + 2, and that passes through A(-4, 14).

Negative this reciprocal through the passes through

A(-4, 14).

Slope: $0 - 3 \xrightarrow{\text{red.}} 1$ New by $y = 0 \times +b$ with (-4, 14) $14 = \frac{1}{3}(-4) + b$ 14 = -1.33 + b $y = 1 \times +15.33$

Ex 4. Find the equation of the line that is perpendicular to 0 = 2x - 3y + 5 and that has an x-intercept of 4.

$$a: \frac{2}{3} \rightarrow \frac{3}{2}$$

$$A = \frac{-3}{2} + 6$$

Negative reciprocal

Q:
$$\frac{2}{3} \rightarrow \frac{-3}{2}$$

New b: $y = ax + b$
 $0 = -3(4) + b$
 $0 = -6 + b$
 $0 = -6 + b$

Ex 5. Find the slope of a line perpendicular to the line that passes through the points (5, 2) and (8, -1).

Find the slope of a line perpendicular to the line that passes through the points (5, 2) and (8, -1)

St line
$$\alpha = \frac{9}{2} - \frac{9}{4}$$

New line

 $\alpha = \frac{1-2}{8\cdot 5}$
 $\alpha = -\frac{3}{3}$
 $\alpha = -1$

A. y+3=xB. 2y-3=xC. -x+y=3D. x+y=-3 y=x+3 y=x+3Ex 7. Line j goes through the point (-7,5) and is perpendicular to 2x-3y=-18. Find the equation of line j. Ex 6. Which of the following is an equation of a line perpendicular to y=x-1?

A.
$$y+3=x$$

B.
$$2y - 3 = x$$

C.
$$-x + y = 3$$

$$Dx+y=-3$$
 Neg. (ec.

$$y = -x - 3$$

$$2x-3y=-18$$
 $-3y=-2x-18$
 $-3y=-3x+6$
 $y=2x+6$

Line j goes through the point (4, 5) and is perpendicular to
$$2x - 3y = -18$$
. Find the equation of the cylindric property is a substitute of the following statements are true about lines w , n , p , and z ?

Ex 8. Which lines are perpendicular?

A.
$$y = \frac{1}{2}x + 6$$

$$y = -\frac{1}{2}x + 1$$

B.
$$y = 3x + 1$$

 $y = 3x - 1$

$$y = 2x$$
C.
$$y = \frac{1}{2}x$$

$$y = \frac{2}{3}x + 3$$

$$y = \frac{3}{2}x - 1$$
Neozahi
recipro

Ex 9. Which of the following statements are true about lines w, n, p, and z?

$$w: y = \frac{3}{2}x + 2$$

$$n: y = \frac{2}{3}x + 6$$

w:
$$y = \frac{3}{2}x + 2$$
 $n: y = \frac{2}{3}x + 6$ $p: y = -\frac{3}{2}x - 3$ $z: y = \frac{2}{3}x + 1$

$$z: \ y = \frac{2}{3}x + 1$$

II.
$$n \parallel z$$
 Some Start. $z \perp p$ Neg year.

D. I and II (E. 1) and III

A. I only

B. II only

C. III only